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ABSTRACT  

In mild cognitive impairment (MCI) due to Alzheimer disease (AD), also known as prodromal 

AD, there is evidence for a pathologic shortage of uridine, choline, and docosahexaenoic 

acid [DHA]), which are key nutrients needed by the brain. Preclinical and clinical evidence 

shows the importance of nutrient bioavailability to support the development and maintenance 

of brain structure and function in MCI and AD. Availability of key nutrients is limited in MCI, 

creating a distinct nutritional need for uridine, choline, and DHA. Evidence suggests that 

metabolic derangements associated with ageing and disease-related pathology can affect 

the body’s ability to generate and utilize nutrients. This is reflected in lower levels of nutrients 

measured in the plasma and brains of individuals with MCI and AD dementia, and 

progressive loss of cognitive performance. The uridine shortage cannot be corrected by 

normal diet, making uridine a conditionally essential nutrient in affected individuals. It is also 

challenging to correct the choline shortfall through diet alone, because brain uptake from the 

plasma significantly decreases with ageing. There is no strong evidence to support use of 

single-agent supplements in the management of MCI due to AD. As uridine and choline work 

synergistically with DHA to increase phosphatidyl-choline formation, there is a compelling 

rationale to combine these nutrients. A multinutrient enriched with uridine, choline, and DHA 

developed to support brain function has been evaluated in randomized controlled trials 

covering a spectrum of dementia from MCI to moderate AD. A randomized controlled trial in 

subjects with prodromal AD showed that multinutrient intervention slowed brain atrophy and 

improved some measures of cognition. Based on available clinical evidence, nutritional 

intervention should be considered as a part of the approach to the management of 

individuals with MCI due to AD, including adherence to a healthy, balanced diet, and 

consideration of evidence-based multinutrient supplements. 
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KEY SUMMARY POINTS 

 In Alzheimer disease (AD) and mild cognitive impairment (MCI) due to AD, there is 

strong evidence for a pathologic shortage of uridine, choline, and docosahexaenoic acid 

[DHA]). 

 While attention to improving nutrition is strongly recommended in the management of 

MCI, changes to normal diet alone cannot correct the shortage of uridine observed in the 

plasma and brains of individuals with dementia. 

 Uridine and choline work synergistically with DHA to increase phosphatidylcholine 

formation, and there is a compelling rationale to combine these nutrients to provide 

neuroprotection and promote neurogenesis. 

 Clinical evidence from randomized controlled trials suggests that use of a uridine-, 

choline-, and DHA-enriched multinutrient product may have a role in the management of 

individuals with MCI due to AD. 

 

DIGITAL FEATURES 

This article is published with digital features, including a summary slide, to facilitate 

understanding of the article. To view digital features for this article go to 

https://doi.org/10.6084/m9.figshare.13312946. 
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INTRODUCTION 

According to the diagnostic criteria developed by the National Institute on Aging-Alzheimer's 

Association (NIA-AA) [1], mild cognitive impairment (MCI) may be differentiated from 

dementia by maintenance of functional independence and the absence of significant 

impairment in social or occupational functions [2]. The NIA-AA criteria also define ‘MCI due 

to Alzheimer’s disease (AD)’ to describe individuals who are symptomatic and have 

evidence of AD pathology prior to a diagnosis of dementia [1]. Individuals with MCI due to 

AD (the prodromal stage of AD, as defined using the International Working Group (IWG)-1 

criteria [3]) are on a clinical pathway towards overt dementia. These individuals typically 

have mild cognitive and functional impairments, and pathologic changes shown by 

biomarkers [2-4]. Disease progression from MCI to AD is characterized by increasingly 

debilitating memory loss and cognitive impairment [5]. Worsening clinical symptoms 

correlate with a net loss of synapses [6], resulting from increased breakdown of existing 

synapses and reduced formation of new synapses [7]. These ominous pathophysiological 

changes begin even before the disease manifests clinically [6] and signal a need for early 

intervention [8, 9]. In MCI due to AD, there is an unmet medical need to stimulate the 

process of synapse formation (neuroregeneration) and to reduce neuronal loss and/or 

mitigate the adverse effects of neuronal breakdown products (neuroprotection) [10]. 

Pharmacologic approaches targeting synaptic dysfunction have been reviewed by other 

authors [10-14]. We wished to consider the challenge from a different perspective, looking at 

the importance of nutrient substrates involved in the metabolic pathways leading to 

synaptogenesis [15]. Evidence suggests that substrates needed simultaneously for the 

Kennedy/phosphatidyl-choline (PC) pathway [16], namely uridine, choline, and 

docosahexaenoic acid (DHA), have important neuroregenerative and neuroprotective 

functions in the central nervous system (CNS) [17, 18]. In this review, we examine the 

evidence for a disease-related shortage in the bioavailability of uridine, choline, and DHA, 

and evaluate the potential of increasing brain levels of these nutrients to improve long-term 
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outcomes in MCI due AD. Other authors have highlighted the potential of dietary and 

nutritional intervention for MCI due to AD, while noting the limited evidence supporting 

effectiveness, particularly for single-agent nutrients [19-22]. It is not our intention to 

recapitulate previous comprehensive reviews; instead, we focus on uridine and choline in 

MCI due to AD, and highlight the particular challenge of correcting the shortfall in uridine 

availability.  

 

METHODS 

We searched the PubMed database in May 2020 using various combinations of the following 

search terms: ‘mild cognitive impairment’, ‘Alzheimer’s disease’, ‘prodromal Alzheimer’s 

disease’, ‘uridine’, ‘choline’, and ‘docosahexaenoic acid’. The primary focus of the search 

was to identify studies in human subjects with MCI. In addition, we included nonclinical 

studies investigating the effects of nutrient interventions on neuronal structure and function. 

The authors selected the most relevant articles based on their knowledge of the field. The 

specific objectives of the literature review were to assess evidence showing changes in the 

levels of uridine and choline in patients with MCI and AD; the neurologic consequences of 

nutrient shortages; the possible neuroregenerative and neuroprotective effects of increasing 

nutrient supply; and outcomes data from controlled clinical trials investigating single or 

multinutrient supplements in patients with MCI. We considered the available evidence 

supporting the hypothesis that a shortage of specific nutrients leads to an inability to 

increase neuronal membrane formation to counteract the net loss of synapses occurring in 

MCI. 

Compliance with Ethics Guidelines 

This article is based on previously conducted studies and does not contain any new studies 

with human participants or animals performed by any of the authors. All clinical trials cited in 

this review provided ethical declarations in the original publications and were done in 

compliance with the Declaration of Helsinki.  
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URIDINE AND CHOLINE ARE CRUCIAL MOLECULES FOR BRAIN FUNCTION 

Uridine 

Uridine is the major form of pyrimidine nucleoside taken up by the brain, where it is used in 

nucleic acids and for the synthesis of membrane constituents [18]. In addition, uridine is a 

biologically active molecule in the brain with apparent roles in several CNS functions 

including memory and neuronal plasticity (reviewed in [18]). The effects of uridine on brain 

structures and functions appear to be mediated by its effects in promoting neuronal 

membrane formation and through interactions with specific uridine-nucleotide receptors 

(brain P2Y2 receptors) that control neuronal differentiation [15, 18, 23]. It has been 

suggested that activation of P2Y2 receptors by uridine triphosphate (UTP), released as a 

neurotransmitter from presynaptic terminals [24], could have a neuroprotective effect in 

neurodegenerative diseases such as AD [25]. Furthermore, UTP may be converted to 

cytidylyl triphosphate (CTP), which is a key intermediate used in the Kennedy cycle to 

generate PC for the synthesis of neuronal membranes (Figure 1) [15]. Considering the 

important role that uridine has in brain structure and functions, it is not surprising that 

shortages in uridine supply can lead to neurological symptoms [26]. 

Choline and DHA 

Choline is an essential micronutrient that is required for normal brain development and 

cognitive functions throughout life [27, 28]. Choline modulates expression of key genes 

related to memory, learning, and cognitive functions via epigenetic mechanisms [27]. The 

central importance of the cholinergic system in the pathophysiology of dementia has been 

reviewed extensively [29]. Choline is a limiting precursor of the neurotransmitter 

acetylcholine (ACh) [27]. Cholinergic deficit is a hallmark of AD [29, 30] and changes may be 

evident from the early stages of disease [31]. However, in MCI and early AD, cognitive 

deficits are not directly associated with cholinergic system loss and research suggests 

compensatory upregulation of choline acetyltransferase (ChAT) activity could be important in 

mitigating the progression of MCI to AD [32].  
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Drug therapy to increase cholinergic neurotransmission is standard in the symptomatic 

management of AD [33] and may be used in some individuals with MCI, despite a lack of 

strong evidence [5]. An alternative approach to counter deficits in cholinergic system could 

be to improve the supply of choline and other substrates. As a key substrate of metabolic 

pathways (Kennedy and phosphatidylethanolamine N-methyltransferase [PEMT]) involved in 

the generation of PC [34, 35], choline is needed, together with DHA and uridine, for the 

synthesis of neuronal membranes (Figure 1) [17].  

Phospholipid abnormalities, consistently affecting PC species with 5 or 6 double bonds, for 

example PC-DHA [28], are well documented in the brains [36-50] and cerebrospinal fluid 

(CSF) [51-53] of patients with AD, and these changes are reflected in the plasma [54-70]. 

Disturbed phospholipid metabolism is evident early in the disease process and is observed 

in individuals with MCI [49, 50, 68, 71-73]. Studies in patients with AD have shown lower 

levels of PC-DHA, which is associated with faster cognitive decline than in control subjects 

[74-76], whereas the highest level of plasma PC-DHA level was associated with a significant 

reduction in the risk of developing all-cause dementia in the Framingham Heart Study [77].  

AVAILABILITY OF KEY NUTRIENTS IS LIMITED IN MCI, CREATING A DISTINCT 

NUTRITIONAL NEED FOR URIDINE AND CHOLINE 

Previously, two systematic meta-analyses have shown that patients with AD have 

significantly lower plasma and brain levels of specific nutrients, including DHA and choline-

containing lipids, compared with age-matched controls with normal cognitive function [78, 

79]. Studies have shown that levels of uridine are lower in plasma and/or brains of patients 

with AD compared with age-matched healthy controls [80-88]. These changes occur in very 

mild AD even in the absence of protein/energy malnutrition [82]. In addition, metabolomic 

analyses have shown increased brain cysteine levels associated with decreased uridine can 

characterize mild AD [80]. The authors suggested that a reduction of uridine in the CSF of 

patients with AD could mediate reduced synaptic plasticity and neuronal deficits [80].  
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Metabolomic analyses have also shown significant changes in neurotransmitter metabolism 

in the ACh pathway in CSF from individuals with AD [88], and in choline and tryptophan 

pathways in early AD [89]. High levels of homocysteine are observed in patients with AD, 

which can impair choline synthesis by interfering with the activity of the PEMT pathway [74]. 

Therefore, metabolic disturbances affecting the PEMT pathway can reduce the syntheses of 

PC and ACh.  

One cross-sectional study examined levels of uridine, choline, folate, homocysteine, and 

other substrates in blood and CSF in 148 individuals with MCI (age 66±8 years, 37% female, 

mini-mental state examination [MMSE] 26.7) compared with 148 healthy, matched controls 

(age 59±8 years, 38% female, MMSE 28.3) [83]. The analysis showed that subjects with 

MCI had significantly lower levels of uridine than controls both in the blood (mean ± standard 

deviation 3.64±1.25 vs. 4.08±1.50, respectively; P<0.05) and in the CSF (2.90±0.60 vs. 

3.07±0.59, respectively; P<0.05). Subjects with MCI also had lower blood and CSF folate, 

and higher CSF homocysteine concentrations than control subjects (all P<0.05) [83]. Blood 

and CSF levels of choline were not significantly different between MCI and control groups 

[83]. The study also included a cohort of 150 patients with AD (age 66±7 years, 37% female, 

MMSE 20.5). While patients with AD had lower levels of CSF uridine and blood choline (and 

a higher CSF homocysteine) than control subjects, the study showed no differences in blood 

and CSF levels of these nutrients between subjects with MCI and those with AD [83]. This 

finding supports the notion that changes in nutrient status start early in the course of AD [82]. 

The study also showed that blood levels of uridine, choline, betaine, folate, and 

homocysteine positively correlated with CSF levels in all groups [83]. However, the authors 

noted weaker correlations between blood and CSF levels of uridine and folate in subjects 

with AD than in control subjects, which they suggested could indicate decreased uptake into 

the brain [83]. The brain cannot synthesize choline, and plasma choline does not freely cross 

the blood-brain barrier [27]. Availability of choline to the brain may therefore be restricted by 
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age-related changes in transport of plasma choline across the blood-brain barrier [27, 90, 

91].  

From a clinical perspective, it is important to know whether shortages in these key nutrients 

correlate with the severity of memory loss and cognitive impairment. A cross-sectional study 

of elderly subjects, aged 70−74 years, selected independently of their cognitive status, 

showed that low levels of choline in the plasma are associated with poor cognitive 

performance [92]. A National Health and Nutrition Examination Survey (NHANES) study 

found that inadequate intake of micronutrients including choline was significantly associated 

with lower working memory performance in healthy elderly subjects (aged ≥60 years) [93]. A 

prospective study involving a total of 551 individuals with subjective cognitive decline (SCD; 

n=219, age 61±8 years, 47% female), MCI (n=135, age 66±8 years, 40% female), or AD-

type dementia (n=197, age 67±8 years, 50% female) looked at potential nutritional markers 

associated with clinical progression (defined as progression of SCD to MCI or dementia, 

progression of MCI to dementia, an increase of ≥1 point on clinical dementia rating scale 

or admission to a nursing home or death in subjects with AD, or self-reported 

progression of cognitive symptoms in all groups) [94]. Clinical progression was observed 

in 25 (11%) subjects with SCD, in 45 (33%) with MCI, and in 100 (51% with AD). 

Preliminary results showed that clinical progression was associated with higher levels of 

low-density lipoprotein cholesterol in subjects with SCD (hazard ratio [HR] 1.92; 95% 

confidence intervals [CI] 1.05−3.52), and with lower levels of uridine in subjects with AD 

(HR 0.78; 95% CI 0.62−0.99). Lower levels of uridine were also associated with clinical 

progression in subjects with a positive amyloid test. Based on these findings, the authors 

recommended targeting uridine and cholesterol levels in individuals with cognitive 

decline [94]. 

In summary, the evidence suggests that metabolic derangements associated with ageing 

and disease pathology can affect the ability of the body to utilize nutrients and generate 
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brain synapses [80, 87, 88]. This is reflected in lower levels of the nutrients as measured in 

the blood and brains of individuals with MCI and very mild AD, and progressive loss of 

cognitive performance.  

INCREASING URIDINE AND CHOLINE AVAILABILITY PROMOTES 

NEUROREGENERATION AND IS NEUROPROTECTIVE 

The metabolic pathways involved in the conversion of uridine to UTP and subsequently to 

CTP for use in the PC pathway depend on low-affinity enzymes; consequently, providing the 

brain with uridine will increase the formation of PC [17]. Preclinical experiments have shown 

that administration of uridine with other key substrates (choline and DHA) stimulates 

neuroregeneration (reviewed in [95]), increasing the production of synaptic proteins [96-98], 

the formation of neurites and synapses [98-102], and the levels of neurotransmission [96, 

103-105], which in turn may lead to improvements in memory performance [103, 106-109]. 

Preclinical experiments have also shown that uridine administration may provide 

neuroprotection [95], evidenced by reducing abeta production and plaque formation [103, 

110], and diminishing neurodegeneration [103, 106, 107, 110]. It is important to note that 

these neuroprotective effects were observed by administering uridine with other nutrients 

including choline and DHA. For example, administering a multinutrient containing uridine, 

choline, and DHA was shown to protect the cholinergic system against Abeta42-induced 

toxicity in rats [103] and to reduce AD-like pathology in AbetaPP/PS1 mice [110]. 

There is evidence from the clinical setting showing that uridine administration may have 

positive effects on cognitive functions. A controlled study in 17 healthy volunteers showed 

that administration of uridine increases brain membrane phospholipid precursors (measured 

using 31-phosphorus magnetic resonance spectroscopy (MRS) [111]. Another MRS study in 

healthy volunteers (n=16) showed that administration of cytidine diphosphate-choline (CDP-

choline) also affects phospholipid membrane turnover and may increase the availability of 

phospholipid membrane components needed to synthesize and maintain cell membranes 

[112]. 
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There is only limited evidence from clinical studies to show administration of uridine or 

choline improves cognitive performance. A small clinical trial (n=12) showed that 

administration of CDP-choline (which increases uridine levels in the brain [113]) improved 

performance in individuals with relatively inefficient memory [114]. A population-based study 

in 1391 subjects (aged 36−83 years) free from dementia showed that concurrent choline 

intake was positively correlated with cognitive function tests and inversely correlated with 

white-matter hyperintensity volume [115]. Another population study (n=2497 dementia-free 

men aged 42−60 years) showed that higher intake of PC was associated with lower risk of 

incident dementia and better cognitive performance [116]. In the dementia setting, a 

randomized controlled trial showed choline alfoscerate decreased cognitive impairment due 

to mild to moderate AD [117].  

THE NUTRITIONAL NEED FOR URIDINE AND CHOLINE IN MCI CANNOT BE 

MET WITH A NORMAL DIET OR SINGLE SUPPLEMENTS 

Long-term adherence to a healthy diet appears to support cognitive function in ageing 

individuals at risk for dementia [20, 118, 119]. Recent research suggests that preventive 

strategies, including diet, exercise, cognitive training, and vascular risk monitoring, may be 

more effective if started early, before pronounced structural brain changes develop [120].  

McGrattan and colleagues did a systematic review of randomized controlled trials of dietary 

interventions (dietary pattern or supplements) in subjects with any form of MCI diagnosed by 

a physician according to internationally accepted criteria [121]. The literature search done in 

June 2016 identified 16 trials, including one using a multinutrient intervention containing 

uridine, choline, and DHA [122]. The authors reported inconsistent findings among the 

heterogenous studies, which overall did not provide clear evidence to support any particular 

dietary intervention to improve cognitive function in MCI, nor evidence of a significant effect 

on progression from MCI to dementia [123]. Our literature search did not identify any more 

recent clinical studies of uridine or choline supplementation in subjects diagnosed with MCI 

due to AD. 
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The apparent nutritional need in MCI due to AD cannot be addressed simply by modifying 

the normal diet or administering multivitamin/mineral supplements as these may 

unnecessarily increase the intake of other nutrients associated with increased risk of 

dementia (e.g. cholesterol, trans fatty acids, saturated fat, and vitamin A) [124, 125]. Dietary 

modifications to address shortages of uridine and choline in individuals with MCI due to AD 

appear to be particularly challenging. Uridine obtained from dietary sources is unavailable to 

the adult brain (due to degradation by the liver) [126], while food substances purported to 

increase uridine levels, such as beer [127], are impractical and potentially harmful. As an 

essential nutrient, choline must be obtained from the diet. Although available from many 

dietary sources, it is estimated that up to 90% of Americans consume below the adequate 

intake for choline [128].  

Dietary supplements have been suggested to increase levels of specific nutrients in 

individuals with MCI and AD [28, 46, 113, 129, 130]; however, to date, nutrient intervention 

studies have shown that while single-agent supplements are effective in elevating plasma 

levels they generally fail to demonstrate clinical benefits [131-134]. We found only limited 

evidence from randomized controlled clinical trials to support single-agent supplementation 

with uridine, choline (or CDP-choline), or DHA in MCI due to AD or probable AD [121, 135-

138]. As uridine and choline work synergistically with DHA to increase PC formation, there is 

a compelling rationale for combining these nutrients [139].  

CLINICAL EVIDENCE FOR URIDINE- AND CHOLINE-ENRICHED 

MULTINUTRITIONAL INTERVENTION IN MCI DUE TO AD 

A specific uridine- choline-, and DHA-enriched multinutrient (Souvenaid; Nutricia) has been 

developed to support synapse formation in patients with AD and MCI due to AD (Table 1). 

The first randomized controlled clinical trials of this multinutrient were done in patients with 

mild-moderate AD because of the high medical and nutritional needs in this population [140-

143]. An early trial of the product in 527 patients with mild-moderate AD dementia (MMSE 

19.5, receiving drug therapy for AD) showed no significant cognitive improvements over a 
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24-week intervention period [143]. The authors speculated that patients with moderate AD 

may have progressed to such an extent that neuronal damage and synaptic dysfunction is 

irreversible and not responsive to either pharmacologic or non-pharmacologic interventions. 

They suggested that the potential to benefit from multinutritional interventions to increase 

synaptogenesis may be limited in moderate AD compared with mild AD because of the 

higher levels of neurodegeneration [143]. Two further clinical trials showed that the 

multinutrient was associated with a statistically significant improvement in memory in 

patients with mild and very mild AD dementia (MMSE 23.9 [141] and MMSE 25 [142]) over 

12 to 48 weeks, respectively [140-142]. Since the data implied effects were most likely to be 

achieved at the early end of the AD spectrum, the LipiDiDiet study was designed to test 

multinutrient intervention in patients with MCI due to AD (prodromal AD) [122]. 

The LipiDiDiet study was a randomized, controlled, double-blind, parallel-group, multicenter 

trial in 311 subjects with MCI due to AD (MMSE 26.6) [122], as defined by episodic memory 

disorder and evidence for underlying AD pathology [3]. Subjects were randomly assigned 

(1:1) to receive Souvenaid or a matched control product, taken every day for 24 months 

[122], with the option to enter an extension study period [144]. The primary endpoint was a 

change in a neuropsychological test battery (NTB; composite z-score based on Consortium 

to Establish a Registry for Alzheimer’s disease [CERAD] 10-word list learning immediate 

recall, CERAD 10-word delayed recall, CERAD 10-word recognition, category fluency, and 

letter-digit substitution test). The authors noted that cognitive decline in the LipiDiDiet study 

population was much lower than expected in both groups, so the primary endpoint was 

inadequately powered; no significant effect on the primary endpoint was found after 24 

months. Interestingly, significant effects were observed for secondary endpoints, including 

Clinical Dementia Rating scale – Sum of Boxes (CDR-SOB) and Alzheimer Disease 

Composite Score (ADCOMS). The ADCOMS scale provides a composite clinical outcome 

measure and was designed for use in trials in MCI due to AD and mild AD dementia [145]. A 

post-hoc analysis of data from the LipiDiDiet study showed that during the 24-month 
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intervention period, worsening on ADCOMS was 36% less in the multinutrient group than in 

the control group; estimated mean treatment difference −0.048 (95% CI −0.090 to −0.007; 

P=0.023) [146]. MRI analyses also showed significant reduction of hippocampal atrophy and 

less expansion of ventricular volume in subjects receiving the multinutrient intervention [122]. 

In line with previous trials in AD, the LipiDiDiet showed that administration of Souvenaid was 

well tolerated and had a high rate of adherence [122, 144]. 

Changes from baseline in the levels of uridine, choline, and other nutrients were not reported 

in the LipiDiDiet study, so it is not possible to correlate effects on clinical and brain imaging 

endpoints with an improvement in nutritional status. Previous randomized controlled trials in 

subjects with mild AD showed that Souvenaid increases levels of uridine, choline, DHA, and 

other key nutrients involved in PC formation [147, 148] and increases markers of 

phospholipid synthesis in the brain in subjects with mild AD [147]. These findings support the 

putative mode of action of the product on synapse formation. 

At 24 months, there was no difference between groups in progression to dementia; however, 

preliminary data with long-term (3-year) intervention suggests a possible effect favoring 

multinutrient intervention [144]. Longer-term follow up of the LipiDiDiet study will provide 

additional insights into the sustainability of effects observed with multinutrient intervention 

and hopefully elucidate additional information on which patients are most likely to benefit. It 

will be interesting to see whether expression of the apolipoprotein E4 (APOE4) gene 

modifies the effects of multinutrient intervention in MCI due to AD. APOE4, a major genetic 

driver of AD, is associated with decreased transport of DHA to CSF [149] and appears to 

influence the effects of DHA supplementation in subjects with AD and MCI [138]. In subjects 

with early-stage AD, the effect of Souvenaid was assessed in predefined subgroups, 

including expression of the APOE4 genotype, however no significant effect was observed 

[141].  

Overall, clinical evidence suggests that a specific uridine- and choline-enriched 

multinutritional intervention may produce meaningful clinical benefits in MCI due to AD, 
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possibly by addressing a conditional shortage in levels of uridine and other key nutrients 

essential for neuronal membrane formation. Additional studies are needed to extend the 

findings of the LipiDiDiet study to the presymptomatic stage of AD, and to correlate 

improvements in nutrient levels with cognitive benefits. 

CONCLUSIONS 

There is strong evidence from systematic reviews and meta-analyses showing a pathologic 

shortage of uridine and choline in AD, including MCI due to AD, particularly in the levels of 

these nutrients in the brain or CSF. While the shortfall appears relatively modest, compared 

with healthy age-matched controls, the impact on the metabolic pathways leading to 

synapse formation could be significant considering the ongoing loss of synapses that 

characterizes progression of MCI and AD. The uridine shortage cannot be corrected simply 

by modifying a normal diet, making uridine a conditionally essential nutrient in affected 

individuals. As an essential nutrient, choline must be obtained from the diet; however, it is 

challenging to correct the shortfall in individuals with MCI through diet alone, because brain 

uptake from the plasma significantly decreases with ageing. Dietary supplements have been 

used to improve outcomes in subjects with MCI but there is limited evidence of effectiveness 

for single-agent supplements and a lack of studies specifically in subjects with MCI due to 

AD. Preclinical research provides a strong rationale for multinutrient intervention providing 

supplemental uridine and choline alongside other substrates used in the metabolic pathways 

for PC formation. Administration of these nutrients at the same time has been shown to 

increase synapse formation and provide neuroprotection in models of dementia. Clinical 

trials of a specific multinutrient product containing uridine, choline, and DHA have shown that 

the benefits are most likely to be achieved at the very early stages of the AD spectrum, when 

there is still a possibility to influence the processes affecting synapse formation and loss. To 

date, there is no evidence that multinutrient intervention can prevent progression of MCI to 

AD, however, preliminary brain imaging data does suggest an observable slowing of 

neurodegeneration.  
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Based on this review, we recommend that nutritional intervention should be considered as a 

part of the personalized approach to the management of individuals with MCI due to AD, 

including adherence to a healthy, balanced diet and consideration of evidence-based 

multinutrient supplements, as indicated. The selection of a multinutritional intervention 

should be based on strong evidence in a clearly defined population of subjects with MCI. 
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Figure 1. Pathways of phosphatidylcholine synthesis. 

EPA = eicosapentaenoic acid; DHA = docosahexaenoic acid; DAG = diacylglycerol; UMP = 

uridine monophosphate; CTP = cytidine triphosphate; CDP-choline = cytidine diphosphate-

choline; Hcy = homocysteine; Met = methionine; UMP = uridine monophosphate; Vit = 

vitamin. 
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