
 

ORIGINAL RESEARCH 

Estimated Impact of Public and Private Sector COVID-19 Diagnostics and Treatments on Us Healthcare 

Resource Utilization 

Daniel M. Sheinson • William B. Wong • Caroline E. Solon • Mindy M. Cheng 

 

D. M. Sheinson () • A. Shah 

Genentech; Medical Affairs; South San Francisco CA, United States  

Email: sheinson.daniel@gene.com 

 
W. B. Wong • C. E. Solon 
Genentech; Medical Affairs; South San Francisco CA, United States 
 
M. M. Cheng 
Roche Molecular Systems, Inc; Global Access & Health Economics; Pleasanton CA, United States 
 
D. Elsea • Y Meng 
Bresmed; Health Economic Analysis; Las Vegas NV, United States 
 

 

 

 

  

Pre-
typ

es
et 

ve
rsi

on



 

ABSTRACT  

Introduction: Coronavirus disease 2019 (COVID-19) has imposed a considerable burden on the United 

States (US) health system, with particular concern over healthcare capacity constraints.   

Methods: We modeled the impact of public and private sector contributions to developing diagnostic 

testing and treatments on COVID-19-related healthcare resource use.   

Results: We estimated that public sector contributions lead to ≥30% reductions in COVID-19-related 

healthcare resource utilization.  Private sector contributions to expanded diagnostic testing and 

treatments lead to further reductions in mortality (-44%), intensive care unit (ICU) and non-ICU hospital 

beds (-30% and -28%, respectively), and ventilator use (-29%).  The combination of lower diagnostic test 

sensitivity and proportions of patients self-isolating may exacerbate case numbers, and policies that 

encourage self-isolating should be considered.   

Conclusion: While mechanisms exist to facilitate research, development, and patient access to 

diagnostic testing, future policies should focus on ensuring equitable patient access to both diagnostic 

testing and treatments that, in turn, will alleviate COVID-19-related resource constraints.   

Keywords: COVID-19; Diagnostic test; Health policy; Health resources  
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Key Summary Points 

Why carry out this study? 

• A compartmental model for COVID-19-related disease transmission, healthcare resource utilization, 

and mortality was calibrated to observed COVID-19 tracking data in order to study the impact of 

treatment and testing during the pandemic in the US. 

• To what extent have novel treatments and expanded diagnostic testing alleviated the severity of the 

COVID-19 pandemic in the U.S. in terms of resource use, disease transmission, and mortality?  

 

What was learned from the study? 

• Both public and private sector contributions to diagnostic testing and treatment were estimated to 

have led to a reduction in COVID-19 cases, mortality and hospital bed/ventilator utilization, thus policies 

which facilitate equitably access to testing and treatments are warranted. 

• Our findings suggest false negatives may contribute significantly to increases in cases, particularly in 

conjunction with poor self-isolation, thus testing accuracy should be considered in combination with 

time to test results 

• A combination of treatments which provide different outcomes, balancing reductions in mortality with 

reductions in hospital length of stay, may be optimal to provide health system capacity relief, thus 

policies which facilitate continued innovation in treatments are critical. 

 

DIGITAL FEATURES 

This article is published with digital features, including a summary slide, to facilitate understanding of 

the article. To view digital features for this article go to https://doi.org/10.6084/m9.figshare.13325630. 
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INTRODUCTION 

As of September 23, 2020, over 30 million coronavirus disease 2019 (COVID-19) cases are estimated to 

have occurred worldwide, resulting in more than 900,000 deaths[1]. Of these, the United States (US) is 

estimated to account for over 6 million cases and more than 200,000 deaths.  Despite constantly 

evolving data as the pandemic progresses, early estimates suggest approximately 20% of COVID-19 

infected patients require hospitalization[2].  Of adults hospitalized in the US, estimates suggest 32% 

required intensive care unit (ICU) admission and 19% required invasive mechanical ventilation[3], 

representing a considerable burden to the health system. 

 

Health system capacity has been a widely reported concern in the US since the onset of the pandemic, 

with many studies highlighting an insufficient number of hospital beds, ICU beds, and mechanical 

ventilators to address the additional needs anticipated with COVID-19[4-6].  The dramatic increase in 

need for health care resources by COVID-19 patients with severe manifestations that require more 

intensive treatment risks overwhelming hospital systems, in terms of both staff and space to treat 

patients[5].  For example, the New York Public Health System had a pre-pandemic capacity of 300 ICU 

beds, yet at the peak of the COVID-19 surge were caring for 1,000 ICU patients[7].  This burden is further 

compounded by the longer lengths of stay (LOS) required by COVID-19 patients requiring respiratory 

support, with estimates of ICU ventilator use ranging from 18-23 days vs. approximately 3-8 days during 

non-pandemic times[8-10].  In turn, capacity constraints - particularly in the ICU setting - may result in 

increased mortality rates[11-14]. 

 

Early models focused on estimating the impact of COVID-19 on hospital system capacity metrics, 

including admissions, ICU admissions, and mechanical ventilator use[6, 15].  However, since then, due to 

the complex challenges of COVID-19, both the public and private sectors have contributed significantly 
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to increasing diagnostic testing capacity, beyond public health laboratories and individual laboratory 

developed tests (LDTs), and studying treatments to address COVID-19.  For example, in April 2020, the 

Accelerating COVID-19 Therapeutic Interventions and Vaccines (ACTIV) partnership was formed 

between members of the public and private sectors to develop a coordinated research strategy to help 

accelerate the development and distribution of COVID-19 therapeutics and vaccines[16].  Given the 

rapid development of innovations to address COVID-19, this presents an opportunity to develop models 

focusing specifically on the impacts of diagnostic testing and therapeutic intervention that have not 

been accounted for in previous models. 

 

Despite both the public and private sectors accelerating diagnostic testing and treatments through Food 

& Drug Administration (FDA) emergency use authorizations (EUAs), there remains a large degree of 

uncertainty regarding the impact of COVID-19 testing and treatment at reducing time to recovery, ICU or 

ventilator use, and/or mortality.  Therefore, the objective of this research was to develop a model to 

estimate the impact to date of public and private sector contributions to developing effective COVID-19 

treatment and nucleic acid-based (molecular) diagnostic testing on resource use in the hospital 

(including hospital beds, ICU beds, and mechanical ventilators) and overall population impacts (including 

mortality and cumulative incidence of disease) at the US national level during the pandemic.  

METHODS  

Model Structure 

An age-stratified compartmental model of disease transmission and healthcare resource utilization 

across the entire US was adapted from Moghadas et al.[6] and further developed by incorporating the 

effects of diagnostic testing among infected individuals and novel treatment in the hospital 

setting.  While the transmission rates in the US have been shown to vary by geographic region, a model 
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at this level would require region-specific details around testing and treatment capacity, which are not 

publicly available. Hence, we aimed to estimate disease spread and resource use in aggregate across the 

country (see Discussion section for limitations). In our model, individuals start as uninfected but 

susceptible to disease and potentially become exposed to infection according to a time-varying 

transmission rate.  Once exposed, individuals develop asymptomatic, mild, or severe disease. A subset 

of symptomatic individuals self-isolate, thereby reducing their contact rate with others in the population 

and the overall transmission of infection.  Asymptomatic and mildly symptomatic individuals were 

assumed to recover from infection while a proportion of severely symptomatic individuals incur 

different levels of hospital resource utilization in the form of general ward (non-ICU), ICU admission, or 

ICU admission with mechanical ventilation (see Figure 1).  Hospitalized patients either recover or die 

according to separate rates of recovery and mortality for each level of care.  Recovered individuals were 

assumed to be immune and not infect others.  Four age categories (0-19, 20-49, 50-64, 65+) were 

modeled throughout, allowing for age-specific transition probabilities of developing severe illness, 

hospitalization, and ICU admission. The model was implemented in Microsoft Excel using a Markov 

structure with 1-day cycles and was initialized by assuming one exposed individual in each age group at 

day 0 corresponding to January 21, 2020.  

 

Diagnostic testing was incorporated into the model by assuming that some infected individuals undergo 

testing, upon which a positive test result leads to self-isolation of that individual.  Treatment was 

incorporated into the model through specific inputs affecting the rates of hospital recovery, mortality, 

and mechanical ventilation usage.  Additional model input parameters control the size and age 

distribution of the population, rates of transmission and recovery, rates of testing and time to results, 

symptom onset and severity, rates of self-isolation, levels of hospitalization, mortality, and testing 

capacity. 
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Model Calibration and Data Sources 

Published literature, government, and non-government sources on COVID-19 were gathered to inform 

input parameter values and provide prior information for calibrating the model to observed data from 

The COVID Tracking Project[17] (see appendix in electronic supplementary materials for detailed 

methodology).  Model parameters related to disease transmission, symptoms, self-isolation, and testing 

were obtained mainly from early publications on the spread of the disease in China[18, 19] and input 

into the model directly (see appendix Tables S1 and S2 in the electronic supplementary materials for 

details).  Model parameters related to hospitalization, including hospitalization rate, proportion 

admitted by care setting, and rates of death and recovery were obtained mainly from US-specific 

sources and informed prior distributions for calibrating those parameters to the observed data (see 

appendix Table S4). In addition, time-varying rates of transmission and testing were incorporated into 

the model and – along with the aforementioned hospitalization parameters – calibrated to the observed 

number of daily positive tests, patients in the hospital, patients in the ICU, patients on mechanical 

ventilation, and cumulative deaths using a sequential estimation technique called the kernel density 

particle filter[20].  Model calibration was implemented using R version 3.5.3[21], and the programming 

code is available on GitHub (https://github.com/Roche/covid-hcru-model). 

Model Scenarios 

Once the model was calibrated, we simulated five scenarios to compare expected transmission, hospital 

resource use, and mortality: 1) a reference scenario reflecting no public or private sector contributions 

to diagnostic testing or treatment; 2) a public sector only scenario reflecting diagnostic testing and 

treatment contributions from the public sector; 3) a scenario with public and private sector 

contributions in developing effective treatment only; 4) a scenario with public and private sector 

contributions in developing effective diagnostic testing only; 5) a scenario with public and private sector 

contributions in developing both effective treatment and testing.  Each scenario was generated using 
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modified input parameters reflecting the assumed level of testing and treatment in the 

population.  Model results for each scenario are reported for a time period when private sector 

diagnostic tests and effective novel treatments were both available via FDA EUAs.  This was defined to 

be from June 1, 2020 to the latest date where COVID-19 tracking data were available at the time of 

model calibration (August 21, 2020). 

Molecular Diagnostic Testing 

Test systems considered in the model included commercial high-throughput (HT) molecular assays (as 

defined in the Centers for Medicare and Medicaid Services [CMS] Ruling 2020-01-R as of April 14, 

2020[22]) and molecular point-of-care (POC) assays, which received FDA EUA by June 1, 2020; other 

commercial tests (Other); a test developed by the Centers for Disease Control and Prevention (CDC); and 

independent LDTs.  In the public sector only scenario, it was assumed that only LDTs and the CDC test 

for SARS-CoV-2 diagnosis would be available (i.e. no HT or POC tests available).  In scenarios that 

included the effects of test systems developed through the private sector, the capacity of HT, POC, and 

other commercial tests were set according to market projections based on publicly available data 

reported by major test manufacturers.  Market share assumptions for the different test systems were 

based on survey data[23] on their relative use in laboratories. 

Treatment Efficacy 

Given its established availability prior to the pandemic and the RECOVERY study[24], which 

demonstrated its clinical benefit for COVID-19, and being funded primarily via ex US sources, 

dexamethasone was assumed to be an available treatment option in the public sector only scenario.  In 

the scenarios including treatments developed from the private sector, treatment effects on hospital 

recovery and mortality rates were based on data for remdesivir since it was the only new treatment that 

was issued an EUA by the FDA for COVID-19[25] at the time of model calibration.  Given the recent data 
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suggesting that there may be some uncertainty surrounding the efficacy of remdesivir [26, 27], we 

conducted a number of sensitivity analyses (see ‘Scenario and sensitivity analyses’ below).  To be 

conservative with respect to some eligible patients not receiving treatment or discontinuing their 

treatment early, it was assumed that 50% of eligible patients were treated. 

Scenario and Sensitivity Analyses 

Additional scenario analyses were conducted to explore the inclusion of additional treatment effects on 

mortality and reduced use of mechanical ventilation.  Given the potential uncertainty in the treatment 

effects of remdesivir[26, 27], a scenario analysis was also conducted for which the private sector effects 

were due to testing only (i.e. remdesivir treatment effects were excluded).  One-way and two-way 

sensitivity analyses were conducted to quantify the impacts of uncertainty associated with individual 

model parameters, including the market share of HT testing, the time at which public-private testing and 

treatment were available, and the impact of test sensitivity versus the proportion of patients that self-

isolate while awaiting their test results. 

Model Availability 

While this model is based on historical data, for those wishing to estimate custom scenarios for 

healthcare capacity planning, particularly as new advancements in the diagnosis and care of COVID-19 

patients become available, the model is available in the electronic supplementary material. 

 

RESULTS 

Calibration of model parameters resulted in estimated resource utilization and cumulative mortality that 

tracked with observed data from The COVID Tracking Project (Figure 2).  In the absence of public and 

private sector contributions (reference scenario), we estimated a cumulative incidence of 17,952,264 

COVID-19 cases, a cumulative mortality of 315,230 deaths, peak (i.e. maximum) non-ICU hospital beds 
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needed of 153,698, peak ICU beds needed of 37,245, and peak ventilator use of 15,338 ventilators from 

June 1 to August 21, 2020 in the US (Table 1; Figure 3a-d).  In the public sector only scenario, which 

assumed availability of only the CDC test and LDTs without novel effective treatments attributed to the 

private sector, we estimated ≥30% reductions in all outcomes measured relative to the reference 

scenario, with the largest effect on cumulative mortality (-40.2%).  The addition of private sector 

contributions to diagnostic testing capacity and effective treatment options were associated with 

additional reductions (relative to the public sector only scenario) across all outcomes, with the greatest 

effect on cumulative mortality (-44.0%) and reductions on other outcomes ranging from -15.2% to -

29.9% (Table 1). 

Examining the individual effects of the private sector contributions allows us to infer the relative 

contributions of expanded diagnostic testing versus novel treatment that contribute to reductions in 

individual outcomes.  The public + private sector scenario assumed novel treatment from the private 

sector provided only a mortality benefit and reduced LOS among non-ICU hospitalized 

patients.  Therefore, the scenario with novel effective treatment alone only affected cumulative 

mortality (60,014 fewer deaths; -31.9%), cumulative non-ICU hospital occupancy (173,435 more beds; 

+3.5%), and peak non-ICU hospital occupancy (4,131 more beds; +4.0%).  In this case, the mortality 

benefit leads to greater non-ICU hospital resource use due to longer LOS among non-ICU patients that 

recover compared to those that die. 

The individual effect of private sector expansion of commercial diagnostic testing capacity alone (i.e. 

excluding any private sector treatment effects) affected all outcomes.  This was due to the increased 

number of true positive test results leading to greater self-isolation and reduced transmission, which has 

downstream effects on hospital resource use and mortality.  In this scenario, expanded testing 

contributed to 3,120,286 fewer cases (-26.8%), 33,746 fewer deaths (-17.9%), 31,883 fewer non-ICU 
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beds at peak occupancy (-31.2%), 7,244 fewer ICU beds at peak occupancy (-29.9%), and 2,884 fewer 

ICU patients on mechanical ventilation at peak usage (-29.2%).  Taken together, we can infer that for the 

combined effects, expanded diagnostic testing was the larger contributor to reducing non-ICU hospital 

bed occupancy while effective novel treatment had a greater contribution to reducing mortality.  

 

Scenario analyses examining the various effects of treatments, as a proxy for potential new treatments 

which may have different effects than those currently marketed, demonstrated a potential reduction in 

outcomes not previously impacted by current treatment via public and private sector contributions 

(Table 1). When treatment-related reductions in ICU admissions and ventilator use were applied, the 

estimated reduction in peak ICU beds increased 1.8-fold (-53.5% vs. -29.9%) and cumulative ICU beds 

increased 2.4-fold (-39.8% vs. -16.6%).  Similarly, assuming reductions in ICU LOS and time on ventilator 

further reduced peak and cumulative ICU beds but to a lesser extent (-34.5% vs. -29.9%, -21.3% vs. -

16.6%).    

 

In sensitivity analyses, changing the date at which expanded diagnostic testing and novel treatment 

were assumed to be available from June 1st to May 1st (as a proxy for when remdesivir was first 

available via EUA) resulted in further reductions in resource utilization, mortality, and incidence of 

COVID-19 cases (range: -11.8% to -16.1%; Table 2).  Among the diagnostic testing parameters varied, the 

model was highly sensitive to assumptions around time to test result and LDT sensitivity.  Increasing 

time to test result by just 1 day (from 3 to 4 days) increased the cumulative incidence of cases by +27.9% 

and resources utilized by +17.9-32.6%.  Similarly, varying LDT sensitivity from 100% to as low as 60% 

resulted in large changes in the incidence of COVID-19 cases (-4.9% to +71.3% cases) and resource use 

(ranging from -5.3% to +77.3%).  Shifting 20% of the share of available testing systems toward more HT 

tests resulted in changes in all outcomes ranging from -0.8% to -2.7%.  Patient compliance with self-
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isolation while awaiting test results was also found to have a significant effect on the cumulative 

incidence of cases and accentuated the effects of lower testing accuracy (Figure 4).  For example, the 

change in cumulative incidence of COVID-19 cases for diagnostic test sensitivities ranging from 100% to 

85% was between -10.2% and +50.0% for the assumed level of 70% self-isolation while awaiting test 

results.  However, when self-isolation while awaiting test results was decreased to 50%, change in 

cumulative incidence of COVID-19 cases ranged from +219.8% to +340.3%.  Model sensitivity to other 

clinical and behavioral factors are shown in Table 2. 

DISCUSSION 

To our knowledge, this is the first study to comprehensively estimate public and private sector 

contributions, via development of molecular diagnostic testing and treatments, in addressing COVID-19-

related health system resource constraints in the US.  We found that the effect of public sector 

contributions and EUAs expanding and expediting the availability of COVID-19 commercial diagnostic 

tests and therapeutics likely had a significant effect on altering the trajectories of cases, mortality, and 

resource utilization. This finding is consistent despite uncertainty in private sector treatment effects, 

indicating diagnostics alone may have a role in reducing health resource utilization, although the 

combination of both testing and treatments together produced a greater effect than either considered 

alone.  While this model focuses on the cases and resource use from a US national perspective, regional 

differences in COVID-19 have been well documented.  Since the availability of testing and treatment 

resources may vary regionally and may not align with the number of cases present in a particular 

geography, our model provides an optimistic scenario and highlights the importance of ensuring 

efficient and equitable distribution of treatments and diagnostics.     

 

While this study focused on resource utilization, it is also important to consider the economic 

implications of resource reductions.  Estimated COVID-19 health care costs per day to hospitals range 

Pre-
typ

es
et 

ve
rsi

on



 

from $2,303 (non-ICU) to $3,449 (ICU with ventilation)[28].  With hospitals facing substantial financial 

burden due to COVID-19, any diagnostic test or treatment which can reduce hospitalizations and LOS 

may provide significant cost savings.  While estimating costs were beyond the scope of this study, it 

should be noted that the costs of a course of treatment for the only guideline recommended COVID-19 

treatments during this study period (remdesivir and dexamethasone)[29-31] are less than, or similar to, 

a single day in a hospital.  

 

Based on our findings, public and private sector contributions have played an important role in 

addressing the pandemic; however, critical needs remain.  Despite the increase in diagnostic testing 

capacity over time, laboratory backlogs have been observed[32].  As estimated in this study, time to test 

result is an important factor in reducing laboratory backlog and influences the infection curve and 

hospitalizations.  Because of the urgency to increase testing capacity, other factors, including test 

sensitivity, have been less scrutinized.  Our findings highlight that test sensitivity is an important 

consideration.  In particular, the real-world clinical validity of available test options is largely unknown, 

and our results demonstrate that tests with lower sensitivity (i.e. increased false negative results) may 

lead to higher risk of viral transmission and increase health care resource utilization.  Based on this, it is 

important to consider test system capacity, time to test result, and test sensitivity when evaluating the 

potential effectiveness of different testing strategies.  Additionally, behavioral factors, such as patient 

compliance with self-isolation, are crucial for minimizing viral transmission.  We found the combination 

of poor patient self-isolation behaviors and lower test sensitivity can exacerbate the impact of false 

negatives on disease transmission and subsequent resource utilization.  Therefore, when considering 

trade-offs between test sensitivity and time to test result, patient compliance with self-isolation 

behaviors is an important parameter to understand.  Consequently, policies that support and enable 

people to self-isolate without penalties or risks (e.g. loss of employment, school, etc.) are important.  
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Effective treatments are equally important given the complementary effects of diagnostic testing on 

COVID-19 health care resource use and patient outcomes.  Recent therapies issued EUA have involved 

both private sector contributions (e.g. remdesivir), as well as public funding (e.g. dexamethasone, 

convalescent plasma).  We projected that the treatments (remdesivir, dexamethasone) have impacted 

mortality and non-ICU hospital resource use.  Research and development (R&D) is occurring at a record 

pace, with over 300 therapies under investigation for COVID-19[33].  These present potential 

opportunities to further reduce capacity constraints. This may be particularly important when 

considering individual treatment effects, since those that reduce mortality may increase hospital LOS 

due to the prolonged survival effect. This was the case in our study, where the effect of diagnostic 

testing alone led to a greater reduction in non-ICU beds than with testing and treatment.  Therefore, a 

potentially optimal scenario may be a combination of novel treatments that balance the reduction in 

mortality and LOS outcomes.  Production and distribution of any future vaccine at scale may be 

challenging; thus, development of novel treatments may have similar or even greater importance than 

vaccine development.  However, unlike the rapid progress in diagnostic testing innovation, developing 

therapeutics has been more challenging, with many failed trials highlighting the difficulty of finding R&D 

success.  Policies that continue to facilitate R&D are critical for the ability to develop innovative 

approaches to addressing the COVID-19 pandemic.  

 

In addition to policies that facilitate R&D and allow recent innovations to be quickly available, those that 

enable patient access to these innovations are equally important.  For example, the Coronavirus Aid, 

Relief and Economic Security (CARES) Act allows coverage of testing without cost-sharing, including 

those receiving testing out of network[34].  The significant impact diagnostic testing may have on 

multiple aspects of health care resource utilization, as observed in this study, highlights the importance 
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of policies that facilitate patient access to testing resources.  However, despite the enactment of these 

policies, there may still be subgroups of patients who are not covered by the CARES Act, such as the 

uninsured.  Given rapid developments in the availability of testing technologies (e.g. antibody, antigen, 

multiplex molecular tests, etc.), the impact of testing on resource utilization, and current understanding 

that lower socioeconomic status patients – many who may be uninsured – are disproportionately 

affected by COVID-19[35-37], policies that clarify coverage requirements and facilitate patient access to 

all COVID-19 testing technologies should be considered. 

 

Unlike with testing, there is currently a lack of federal policies facilitating access to COVID-19 treatment 

via limiting cost-sharing.  We found that treatment contributed a larger portion of the reduction in 

mortality relative to diagnostic testing, highlighting the importance of access to effective 

treatments.  While many private payers have waived cost sharing for their members[38], some patients 

may still be vulnerable to high cost-sharing responsibilities, such as those with high deductible insurance 

plans (that have not waived cost sharing) or the uninsured.  These patients may delay seeking care due 

to cost, resulting in additional resource utilization due to missed opportunities to leverage 

future/existing treatments at an earlier disease stage.  Furthermore, delays or avoiding care may result 

in greater mortality[39, 40] and downstream productivity losses, accentuating the existing disparities in 

care.  Future policies that ensure equitable access to hospital care and treatment should be considered. 

 

Like all models, ours has limitations.  First, the model assumes equal distribution of treatments and 

testing across the US.  In reality, health care resources in the US are not equally distributed relative to 

need, so the impact of diagnostics and treatments may vary by individual health system.  Thus, 

estimates of expected resource use relative to known availability of hospital/ICU beds and ventilators 

throughout the country should only be interpreted in aggregate across the country and is not necessarily 
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reflective of the resource burden faced by individual health systems.  Second, expanded testing 

scenarios assume that laboratory infrastructures are in place and the necessary consumables are widely 

available when this may not be the case.  Lastly, the model assumes treatments and testing became 

available instantaneously on a single date when in actuality the availability of new diagnostics and 

treatments were spread out over time.  This may, for example, overestimate the impact of public sector 

contributions, as it is assumed both public sector testing capacity and treatments (dexamethasone) 

were available at scale since the beginning of the pandemic. 

CONCLUSION 

Public and private sector efforts have provided substantial contributions to reducing COVID-19-related 

transmission, health care resource utilization, and mortality.  Both diagnostic testing capacity and 

accuracy are important aspects to consider when identifying how to optimally deploy testing 

resources.  Current COVID-19 treatment options are limited, yet provide significant contributions to 

reducing health care resource utilization and mortality through treatment benefits in the less severe 

hospitalized patients.  Future combinations of treatments which impact different aspects of resource 

use may be optimal in reducing COVID-19-related pressure on healthcare system capacity.  Policies that 

incentivize innovation and ensure equitable access to hospital care, testing, and treatment will be 

important to facilitate this. 
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Table 1. Estimated effect of public and private sector contributions to the reduction in the incidence and 

mortality of COVID-19 and improvements in health care resource utilization between June 1 to 

August 21, 2020 

 

 Cumulati
ve 

Incidence 

Cumulat
ive 

mortalit
y 

Cumulati
ve 

hospital 
non-ICU 

beds 
occupanc

y 

Cumula
tive ICU 

beds 
occupa

ncy 

Cumula
tive 

ventilat
or use 

Peak 
hospita
l non-

ICU 
beds 

occupa
ncy 

Peak 
ICU 

beds 
occupa

ncy 

Peak 
ventilat
ors use 

No public or private sector  

No testing or 
treatment 

17,952,2
64 

315,230 7,339,023 1,777,2
31 

733,404 153,69
8 

37,245 15,338 

Public Sector Only (vs. No Public or Private Sector) 

Testing & 
Treatment 

-
6,330,61

6 (-
35.3%) 

-
128,850 
(-40.2%) 

-
2,428,909 
(-33.1%) 

-
600,165 
(-33.8%) 

-
249,030 
(-34.0%) 

-51,464 
(-

33.5%) 

-12,995 
(-

34.9%) 

-5,437  
(-

35.5%) 

Public + Private Sector (vs. Public Sector only) 

Testing & 
Treatment 

-
3,120,28

6 (-
26.8%) 

-82,855 
(-44.0%) 

-748,610  
(-15.2%) 

-
195,356 
(-16.6%) 

-76,220  
(-15.7%) 

-28,888 
 (-

28.3%) 

-7,244 
 (-

29.9%) 

-2,884  
(-

29.1%) 

Testing only -
3,120,28

6 (-
26.8%) 

-33,746  
(-17.9%) 

-895,722  
(-18.2%) 

-
195,356 
(-16.6%) 

-76,202  
(-15.7%) 

-28,888  
(-

28.3%) 

-7,244  
(-

29.9%) 

-2,884  
(-

29.1%) 

Treatment 
only 

0  
(0.0%) 

-60,014 
(-31.9%) 

173,435 
(3.5%) 

0  
(0.0%) 

0  
(0.0%) 

4,131 
(4.0%) 

0  
(0.0%) 

0  
(0.0%) 

Impact of potential future treatment effects on public + private sector contributions: 

Reductio
n in 
mortality 
for ICU 
patients 

-
3,120,28

6 (-
26.8%) 

-83,544  
(-44.3%) 

-748,610  
(-15.2%) 

-
189,594 
(-16.1%) 

-76,202  
(-15.7%) 

-28,888  
(-

28.3%) 

-7,125  
(-

29.4%) 

-2,884  
(-

29.1%) 
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Reductio
n in 
incidence 
of ICU 
admissio
ns & 
ventilator 
use 

-
3,120,28

6 (-
26.8%) 

-79,462  
(-42.2%) 

-531,031  
(-10.8%) 

-
468,297 
(-39.8%) 

-
213,429 
(-44.1%) 

-24,572  
(-

24.0%) 

-12,974 
(-

53.5%) 

-5,608  
(-

56.6%) 

Reductio
n in ICU 
LOS & 
time on 
ventilator 

-
3,120,28

6 (-
26.8%) 

-82,720  
(-43.9%) 

-748,610  
(-15.2%) 

-
250,720 
(-21.3%) 

-97,670  
(-20.2%) 

-28,888  
(-

28.3%) 

-8,376  
(-

34.5%) 

-3,325  
(-

33.6%) 

 
 

Hypothetical treatment effect scenarios are in addition to the testing and treatment contributions 

estimated in the public + private sector scenario.  Treatment effects assumed are as follows: 0.28, 0.80, 

and 0.65 hazard ratios for reduction in mortality for non-ICU, ICU patients, and ICU patients on 

ventilation, respectively; 10% for reduction in incidence of ICU admissions and ventilator use, 3 days for 

reduction in non-ICU and ICU LOS & time on ventilator. ICU=intensive care unit. LOS=length of stay. 
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Table 2. Impact of model assumptions and parameters on incidence and mortality of COVID-19 and 

health care resource utilization  

  (L, H) 

Relative change vs. public+private sector contribution scenario 

Cumulat

ive 

incidenc

e 

Cumulat

ive 

mortalit

y 

Cumulat

ive 

hospital 

non-ICU 

beds 

occupan

cy 

Cumulat

ive ICU 

beds 

occupan

cy 

Cumulat

ive ICU 

beds 

(ventilat

ors) 

occupan

cy 

Peak 

hospital 

non-ICU 

beds 

occupan

cy 

Peak 

ICU beds 

occupan

cy 

Peak 

ICU beds 

(ventilat

ors) 

occupan

cy 

Public + private sector 

contribution - treatment and 

testing 

  
8,501,36

2 
105,525 

4,162,32

3 
981,710 408,155 73,346 17,006 7,016 

Private sector contribution 

starting date 
                  

Public + Private sector 

contribution starting date May 1 
a -15.4% -12.5% -12.6% -12.3% -11.8% -16.1% -15.9% -15.7% 

Testing scenarios                   

Increase in HT testing by 20% b -2.0% -0.9% -0.9% -0.8% -0.8% -2.7% -2.6% -2.4% 

% testing performed for 

asymptomatic patients 

(0%, 

20%) 

(-3.4%, 

3.3%) 

(-2.9%, 

2.8%) 

(-2.9%, 

2.8%) 

(-2.8%, 

2.6%) 

(-2.7%, 

2.6%) 

(-3.9%, 

3.7%) 

(-3.8%, 

3.6%) 

(-3.7%, 

3.6%) 

LDT test sensitivity 

(60%, 

100%) 

(71.3%, -

4.9%) 

(61.3%, -

4.1%) 

(61.7%, -

4.1%) 

(59.0%, -

4.0%) 

(57.6%, -

3.9%) 

(77.3%, -

5.3%) 

(75.6%, -

5.2%) 

(74.6%, -

5.1%) 

Time to test result - days (2, 4) 

(-22.1%, 

27.9%) 

(-18.5%, 

19.8%) 

(-18.7%, 

20.0%) 

(-17.9%, 

18.7%) 

(-17.4%, 

17.9%) 

(-24.2%, 

32.6%) 

(-23.5%, 

31.2%) 

(-23.2%, 

30.4%) 

Clinical scenarios                   

Time from symptom onset to 

test for severe/critical patients - 

days (0.5, 2) 

(-33.2%, 

37.4%) 

(-31.2%, 

36.5%) 

(-31.3%, 

36.6%) 

(-30.7%, 

35.8%) 

(-30.4%, 

35.4%) 

(-34.3%, 

38.3%) 

(-34.0%, 

38.0%) 

(-33.8%, 

37.9%) 

Time from symptom onset to 

test for mild patients - days (1, 3) 

(-26.1%, 

10.1%) 

(-24.3%, 

9.5%) 

(-24.3%, 

9.6%) 

(-23.8%, 

9.3%) 

(-23.5%, 

9.2%) 

(-27.3%, 

10.6%) 

(-27.0%, 

10.5%) 

(-26.8%, 

10.4%) 

% of infected individuals that 

are asymptomatic 

(10%, 

25%) 

(16.7%, -

13.0%) 

(24.9%, -

18.7%) 

(25.1%, -

18.8%) 

(24.3%, -

18.4%) 

(23.9%, -

18.1%) 

(30.7%, -

22.1%) 

(29.9%, -

21.7%) 

(29.5%, -

21.5%) 

Behavioral factors                   

% of severe cases self-isolating 

immediately upon symptom 

onset 

(0%. 

10%) 

(9.9%, -

9.2%) 

(8.7%, -

8.0%) 

(8.7%, -

8.1%) 

(8.4%, -

7.8%) 

(8.3%, -

7.7%) 

(11.1%, -

10.1%) 

(10.8%, -

9.9%) 

(10.6%, -

9.7%) 

% severe cases self-isolating 

after symptom onset 

(70%, 

90%) 

(5.1%, -

4.5%) 

(4.8%, -

4.2%) 

(4.8%, -

4.3%) 

(4.7%, -

4.2%) 

(4.7%, -

4.1%) 

(5.3%, -

4.7%) 

(5.2%, -

4.6%) 

(5.2%, -

4.6%) 
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% mild cases self-isolating after 

symptom onset 

(0%. 

10%) 

(13.1%, -

11.8%) 

(12.3%, -

11.0%) 

(12.4%, -

11.0%) 

(12.1%, -

10.8%) 

(11.9%, -

10.6%) 

(13.7%, -

12.3%) 

(13.5%, -

12.2%) 

(13.4%, -

12.1%) 

 
aAssumes private sector contributions to treatment and testing starts on May 1, 2020, and the result 

collection period is the same as base case June 1 to August 21.  bThe number of HT machines are 

increased by 20% and the number of LDT is reduced by the same absolute amount so that the total 

number of systems are the same.  H=high parameter estimate. HT=high throughput. ICU=intensive care 

unit. L=low parameter estimate. LB=lower bound. LDT=Laboratory Developed Test.  
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Fig. 1 Compartmental model structure 
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Fig. 2 Estimated resource utilization (posterior means) over time and 95% credible intervals from 

calibrated model alongside observed data from The COVID Tracking Project. 
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Fig. 3 Public and private sector contributions for COVID-19 incidence (a) and mortality (b) and hospital 

resource use over time (c, d) 

Footnote: 6/1/2020 is the assumed start date of the private sector contributions to diagnostic testing 

and novel effective treatments.  8/21/20 is the end date of the results reporting period.  ICU=Intensive 

care unit. 
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Fig. 4 The relationship between test sensitivity and self-isolation while awaiting test results on 

cumulative incidence of COVID-19 cases 

Footnote: Results displayed are the percentage change in cumulative incidence relative to the scenario 

assuming public + private sector contributions to diagnostic testing and novel treatment. 
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